Marker Assisted Selection of xa5, xa13 and Xa21 Gene in Breeding Populations Derived from Karma Mahsuri x IRBB 59

Authors

  • A J Kotasthane
  • N J Gaikwad

DOI:

https://doi.org/10.32439/ps.v4i1.108-116

Keywords:

Bacterial blight (BB), Broad-spectrum resistance, Gene pyramiding marker-assisted selection (MAS), Rice

Abstract

Bacterial leaf blight, caused by the Gram negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is a serious disease throughout the rice growing world. Resistant cultivars are the primary and most effective means of control. Marker assisted selection (MAS) can help in screening more efficiently for the presence or absence of resistant genes. Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In the present study, to incorporate durable resistance against bacterial blight three resistance genes, xa 5, xa13 and Xa21, from an indica donor IRBB 59 were introgressed into high yielding susceptible rice cultivar Karma Mahsuri. Karma Mahsuri is one of the most popular varieties of Chhattisgarh and mega varieties of India. These three genes were pyramided through marker-assisted breeding. For MAS of xa5:- RG556, RM122, RM390, RM13;  xa13:-RG136 and RM 230 and  Xa21: Xa21 and RM21 are the known linked markers. Markers xa5R and xa5S specific for xa5 resistant and susceptible genes respectively, xa13Pro for xa13 gene and PT248 for Xa21 gene obtained from Dr Sundaram (DRR, Hyderabad) were also used in the present study for MAS. High-resolution maps generated in silico around xa5 and xa13 will be useful for the precise placement of a gene of interest and the analysis of regional and sub-regional rates of recombination and appropriate combinations of markers for marker assisted selection in plant-breeding. In Karma Mahsuri X IRBB 59 cross we got Three lines (03) containing three gene (xa5, xa13 and Xa21), Twenty three (23) line contain a combination of xa5 & xa13,  only one (01) with xa5 and Xa21. There were eight lines with xa5 gene Seventeen (17) lines with xa13 gene. We therefore report herein the development of nil, two and three gene pyramids of  xa5, xa13 and Xa21 in the background of Karma Mahsuri.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abenes, M.L.P., E.R. Angeles, G.S. Khush and N. Huang..(1993). Selection of bacterial blight resistant rice plant in the F2 generation via their linkage to molecular markers. Rice Genet. Newsl. 10: 120–123.

Adhikari, T.B., B.R. Chandra, S. Anil and T.W. Mew.(1999). Use of partial host resistance in the management of bacterial blight of rice. Plant Disease 83: 896-901. DOI: https://doi.org/10.1094/PDIS.1999.83.10.896

Akagi, H., Yokozeki, Y., Inagaki, A. and Fujimura, T. (1997). Highly polymorphic microsatellites of rice consists of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor. Appl. Genet. 94: 61-67. DOI: https://doi.org/10.1007/s001220050382

Alfano, J. R., and Collmer, A. (2004). Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol, 42:385-414. DOI: https://doi.org/10.1146/annurev.phyto.42.040103.110731

Anderson, J.R. and T. Lübberstedt. (2003). Functional markers in plants. Trends in Plant Sci. 8(11): 554-560. DOI: https://doi.org/10.1016/j.tplants.2003.09.010

Bhasin, H., Bhatia, D., Raghuvanshi, S., Lore, J.S., Sahi, G.K., Kaur, B., Vikal, Y., Singh,K., 2012. New PCR-based sequence-tagged site marker for bacterial blight resis-tance gene Xa38 of rice. Mol. Breed. 30, 607–611. DOI: https://doi.org/10.1007/s11032-011-9646-y

Blair M.W., Hedetale V, McCouch SR (2002) Allelic diversity in cultivated rice (Oryza sativa L.) detected with fluorescent labeled microsatellite markers. TheorAppl Genet DOI 10.1007/ s00122-002-0921-5.

Cheema, K., Grewal, N., Vikal, Y., Sharma, R., Lore, J.S., Das, A., Bhatia, D., Mahajan,R., Gupta, V., Bharaj, T.S., Singh, K., (2008). A novel bacterial blight resistance genefrom Oryza nivara mapped to 38 kb region on chromosome 4 L and transferredto Oryza sativa L. Genet. Res. 90, 397–407. DOI: https://doi.org/10.1017/S0016672308009786

Dubcovsky, J. (2004) Marker-assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898. DOI: https://doi.org/10.2135/cropsci2004.1895

Ellis, J.G., Rafiqi, M., Gan, P., Chakrabarti, A., and Dodds, P.N. (2009). Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr. Opin. Plant Biol. 12: 399–405. DOI: https://doi.org/10.1016/j.pbi.2009.05.004

Fang F.C , Mechanisms of nitric oxide-related antimicrobial activity,Journal of Clinical Investigation 99 (1997) 2818–2825. DOI: https://doi.org/10.1172/JCI119473

Flor, H.H. (1955). "Host-parasite interaction in flax rust - its genetics and other implications".Phytopathology 45: 680–685.

Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., Yang, F., Chu, Z., Wang, G.L.,White, F.F., Yin, Z., (2005). R gene expression induced by a type-III effector triggersdisease resistance in rice. Nature 435, 1122–1125. DOI: https://doi.org/10.1038/nature03630

Gupta, P. K., Balyan, H. S., Sharma, P. C. and Ramesh, B. (1996). Microsatellite in plants- a new class of molecular markers. Curr. Sci. 70: 45-54

Hopkins, C. M., White, F. F., Choi, S. H., Guo, A. and Leach, J. E. (1992) A family of avirulence genes from Xanthomonas oryzae pv oryzae. Mol Plant-Microbe Interact 5:451–459 DOI: https://doi.org/10.1094/MPMI-5-451

Huang, M., Angeles, E.R., Domino, J., Magpantay, G., Singh, S., Zhang, G., Kumaravadi-vel, N., Bennett, J., Khush, G.S., (1997). Pyramiding bacterial blight resistance genein rice: marker-assisted selection using RFLP and PCR. Theor. Appl. Genet. 95,315–320. DOI: https://doi.org/10.1007/s001220050565

Ikeda, R., Tabien, R. E., and Khush, G. S. (1991). Chromosomal location of Xa-21. Rice Genet. News! 8:102-103.

IRRI. (2010). International Rice Research Institute, Rice Fact Sheet, Bacterial Blight. March 2010.

Khush, G.S., and T. Ogawa. (1989). Major gene for resistance to bacterial blight in rice. Pages 177-192 in bacterial blight of rice. International Rice Research Institute, P. O. Box 933, Manila, Philippines.

Korinsak, S., 2009a. Maker-Assisted Pyramiding Bacterial blight Resistance Genes(xa5, Xa21, xa33(t), Xa34(t) and qBB11) in Rice. Kasetsart University, Bangkok,Thailand (M.Sc. Thesis).Korinsak, S., Sriprakhon, S., Sirithanya, P., Jairin, J., Korinsak, S., Vanavichit, A., Too-jinda, T., (2009) b. Identification of microsatellite markers (SSR) linked to a newbacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’. Maejo Int. J. Sci.Technol. 3, 235–247.

Kottapalli, K.R., P. Kottapolli, G.K. Agrawal, S. Kikuchi and R. Rakwal. (2007). Recessive bacterial leaf blight resistance in rice: Complexity, challenges and strategy. Biochem. Biophys. Res. Com. 355(2): 295-301. DOI: https://doi.org/10.1016/j.bbrc.2007.01.134

Lee, S.W., Han, S.W., Bartley, L.E., Ronald, P.C., (2006). Unique characteristics of Xan-thomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity.Proc. Natl. Acad. Sci. 103, 18395–18400. DOI: https://doi.org/10.1073/pnas.0605508103

Mew, T.W.,( 1987). Current status and future prospects of research on bacterial blightof rice. Annu. Rev. Phytopathol. 25, 359–382. DOI: https://doi.org/10.1146/annurev.py.25.090187.002043

Noh, T.H., Lee, D.K., Park, J.C., Shim, H.K., Choi, M.Y., Kang, M.H., Kim, J.D., (2007). Effectof bacterial leaf blight occurrence on rice yield and grain quality in different ricegrowth stage. Res. Plant Dis. 13, 20–23. DOI: https://doi.org/10.5423/RPD.2007.13.1.020

Rajpurohit, D., Kumar, R., Kumar, M., Paul, P., Awasthi, A., Basha, P.O., Puri, A., Jhang,T., Singh, K., Dhaliwal, H.S.,( 2011). Pyramiding of two bacterial blight resistanceand a semi dwarfing gene in Type 3 Basmati using marker-assisted selection.Euphytica 178, 111–126. DOI: https://doi.org/10.1007/s10681-010-0279-8

Shanti, M.L., Shenoy, V.V., Lalitha Devi, G., Mohan Kumar, V., Premalatha, P., NaveenKumar, G., Shashidhar, H.E., Zehr, U.B., Freeman, W.H.(2010). Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parentallines of hybrid rice. J. Plant Pathol. 92, 495–501.

Singh, S., Sidhu, J.S., Huang, N., Vikal, Y., Li, Z., Brar, D.S., Dhaliwal, H.S., Khush, G.S.,(2001). Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21)using marker-assisted selection into indica rice cultivar PR106. Theor. Appl.Genet. 102, 1011–1015. DOI: https://doi.org/10.1007/s001220000495

Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S., Zhang, Q., (2004). Xa26, a gene resistanceto Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-likeprotein. Plant J. 37, 517–527. DOI: https://doi.org/10.1046/j.1365-313X.2003.01976.x

Zheng, C.K., Wang, C.L., Yu, Y.J., Liang, Y.T., Zhao, K.J., (2009). Identification of molecularmapping of Xa32(t), a novel resistance gene for bacterial blight (Xanthomonasoryzae pv. oryzae) in rice. Acta. Agron. Sin. 35, 1173–1180 DOI: https://doi.org/10.1016/S1875-2780(08)60089-9

Downloads

Published

31-01-2021

How to Cite

[1]
Kotasthane , A.J. and Gaikwad, N.J. 2021. Marker Assisted Selection of xa5, xa13 and Xa21 Gene in Breeding Populations Derived from Karma Mahsuri x IRBB 59. Plantae Scientia. 4, 1 (Jan. 2021), 108–116. DOI:https://doi.org/10.32439/ps.v4i1.108-116.

Issue

Section

Research Articles